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Recent developments in applied mathematics have demon-
strated that images and other signals can be reconstructed 

from far fewer data than traditionally believed necessary [1,2]. The 
results exploit the fact that images of the real world or human-
generated experiments are a very special subset of all possible images, 
the overwhelming majority of which will look like random noise. 
When we try to reconstruct an image from data, what sets apart the 
image we are looking for is that it is sparse – it can be represented 
with relatively few coefficients, far fewer than the number of pixels 
in the image. We have developed reconstruction algorithms that can 
reconstruct images from a number of data that is commensurate 

with the complexity (or informa-
tion content) of the image, rather 
than its size. These algorithms are 
at the forefront of the new and 
popular field known as compressive 
sensing, so called because the few 
data from which an image can be 
effectively reconstructed constitute 
a compression of an image. Instead 
of needing to obtain every pixel of 
an image and then compressing it 
(as is done by digital cameras, for 
example), we can, in effect, mea-
sure a compression directly.
There are many applications of 
the ability to reconstruct images 
from very few data, particularly 
whenever data are difficult, 
expensive, or dangerous to acquire. 

For example, in medical imaging the high X-ray dose of a CT scan 
can be replaced with relatively few radiographs. Better yet, in many 
cases the much safer MRI can be substituted—the usual barrier 
is the high cost of the procedure, due to the long scanning time 
required. Compressive sensing techniques can allow a much shorter 
scan to be used instead, making the procedure more palatable to 
insurance companies. Both CT and MRI are also used in national 
security applications, where the ability to reduce data collection 
time can be very advantageous. Many other applications related 
to LANL's mission stand to benefit as well. In remote sensing or 
space situational awareness, one is often fundamentally limited in 
the amount of information one can gather. Compressive sensing 
would allow more information to be extracted from the data that are 
available.

As a simple example, consider Fig. 1. We reconstruct a test image, 
the Shepp-Logan phantom, which was designed to be challenging 
for medical imaging algorithms to reconstruct. Our data are samples 
of the 2D Fourier transform of the phantom, taken along nine radial 
lines through the origin of the frequency domain, together making 
up less than 3.5% of the full Fourier transform. Sampling along 
radial lines in this way makes the data roughly equivalent to having 
radiographs of the phantom, one for each line. The reconstruction 
problem can thus be seen as a limited-view CT problem, but also as 
an MRI problem, as MRI data can be seen as directly sampling the 
Fourier transform as the object. Our reconstruction takes advantage 
of the fact that the gradient of the phantom is very sparse, being zero 
except at the boundaries of the ellipses. Our reconstruction approach 
is to solve an optimization problem, which minimizes a sparsity-
inducing penalty term, subject to the data constraint. The usual 
reconstruction method for CT is filtered backprojection, which gives 
a very poor reconstruction, being designed for having hundreds of 
radiographs. The usual compressive sensing approach also fails with 
so few data, but our particular method gives an exact reconstruction.

The reason our compressive sensing approach outperforms the usual 
one is that it is a closer approximation to what we really want to 
solve, namely the problem of simply finding the sparsest solution 
that is consistent with the data. However, directly solving that 
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Fig. 1. Top left: the Shepp-Logan 
phantom, a test image. Top right: 
reconstruction using filtered back-
projection is poor. Bottom left: 
reconstruction using usual, convex 
compressive sensing method is also 
poor. Bottom right: our nonconvex 
reconstruction is exact.
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problem is computationally intractable; all the world's computers 
working for trillions of years would hardly make a dent. The field 
of compressive sensing was born when it was discovered that one 
could replace this problem with one that is convex. Convexity 
of a function implies that any local minimum will be a global 
minimum—this means, for example, that one can just head 
downhill, such as moving in the direction opposite of the gradient 
of the function, and eventually get to a global minimum. The 
research field of convex optimization is very mature, so there are 
several computationally efficient algorithms available for solving 
the convex approximation of the sparse recovery problem. Under 
reasonable conditions, it has been proven that the solution of the 
convex problem will be the same as that of the intractable sparse 
recovery problem. This result generated substantial excitement, with 
compressive sensing now being one of the fastest growing areas of 
applied mathematics.

Our approach, however, is nonconvex. Simply heading downhill 
will almost certainly result in convergence to a local minimum, 
but not the global minimum. For the Shepp-Logan phantom 
example, the number of local minima exceeds 104,500! This makes 
it seemingly impossible to hope to obtain the global minimum. 
However, we have developed an algorithm approach that does so, 
with tremendous reliability [3,4]. The key is an iterative smoothing 
approach, which first smooths out the function being minimized 
so that it no longer has any local minima. The smoothing is then 
successively diminished, with the solution at each stage used to 
initialize the next stage. The result is that the iteration reaches the 
right convergence basin, before the local minima reappear. We 
thus obtain algorithms that are able to avoid the local minimum 
problem, and also serve to more closely approximate the true sparse 
recovery problem. This is what allows our algorithms to successfully 
reconstruct images from many fewer data than the usual, convex 
approach to compressive sensing.

Our latest research has led to an algorithm that not only works 
with fewer data than its predecessors, but is computationally very 
fast, at least for many image reconstruction problems [5]. It works 
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particularly well for cases where the data 
consist of samples of the Fourier transform, 
as in the example above. In addition to CT 
and MRI, Fourier-domain sampling arises in 
applications such as synthetic aperture radar 
and sonar, or where interferometry is used, 
such as in radio-astronomy or spectroscopy. 
Most algorithms that converge in a reasonable 
number of iterations require solving a large, 
linear system during each iteration. These 
can be computationally expensive to solve, 
especially for large-scale problems. Our 
approach allows this system to be solved 
directly in the Fourier domain, essentially 
requiring just two Fast Fourier Transforms 
(FFTs). Using FFTs makes solving the linear 
system much faster, while also scaling very 
well to large problems. For example, the 
first Shepp-Logan phantom experiments took 
the better part of an hour to reconstruct the 
256×256 image. The new method takes just 
seconds, using very simple prototype code 
(in Matlab) on a simple laptop (see Fig.2). Thus, using nonconvex 
optimization, with unparalleled abilities to recover images from 
fewer data than ever before, image reconstruction can now be 
done using algorithms that are efficient, making many large-scale 
applications much more feasible.

Fig. 2. Reconstruction of a real test object from 8-coil MRI 
data with 31% sampling. All eight reconstructions were 
performed in 17 s, using simple Matlab code on a laptop. 

For more information contact 
Rick Chartrand at  
rickc@lanl.gov.


